Beyond the Fourier Transform: Coping with Nonlinear, Nonstationary Time Series

Norden E. Huang

Goddard Institute for Data Analysis NASA Goddard Space Flight Center

Seminar Announcement, Johns Hopkins University, 1998 SEMINAR NOTICE

Mode analysis of non-stationary, random systems; the overthrow of Fourier analysis.

Dr Norden Huang, NASA Goddard Space Flight Center

Modern techniques for the analysis of non-stationary random systems and the identification of embedded characteristic structures include wavelet analysis and Hilbert transforms, each of which has its own limitations. A new and simple method applicable to non-linear systems will be described; it involves an effectively finite and often small number of discrete modes and gives sharp identification of embedded structures. Examples will be given of synthetic records analysed by various methods, and of real time series of non-linear systems, such as surface waves, tidal records and low-frequency oceanic oscillations; this new technique gives much simpler and more revealing interpretations than conventional methods do.

12 noon, Mon. 5 February, 304 Olin, JHU

Morton K Blaustein Department of Earth & Planetary Sci.

For Further information: Owen Phillips 516-4658

Jean-Baptiste-Joseph Fourier

1807 "On the Propagation of Heat in Solid Bodies"

1812 Grand Prize of Paris Institute
"Théorie analytique de la chaleur"

'... the manner in which the author arrives at these equations is not exempt of difficulties and that his analysis to integrate them still leaves something to be desired on the score of generality and even rigor.'

1817 Elected to Académie des Sciences

1822 Appointed as Secretary of Math Section paper published

Fourier's work is a great mathematical poem.

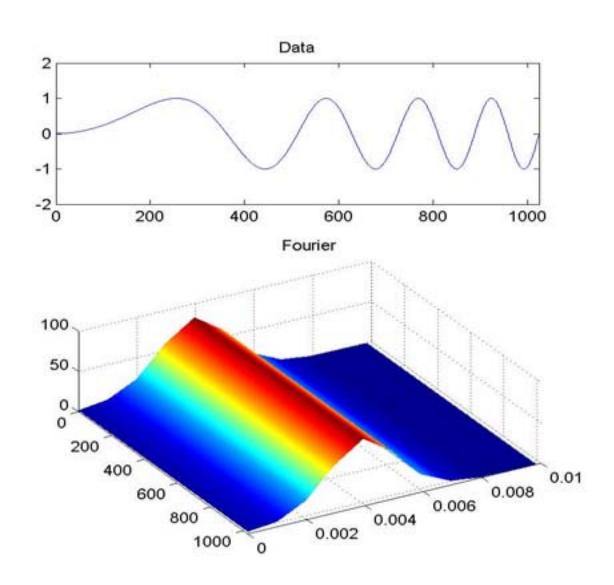
Lord Kelvin

Fourier Integral

$$F(w) = \mathop{\mathbf{0}}_{-Y}^{Y} f(t) e^{iwt} dt;$$

$$f(t) = \frac{1}{2p} \mathop{\circ}\limits_{-Y}^{Y} F(w) e^{-iwt} dw$$

Fourier Spectrum

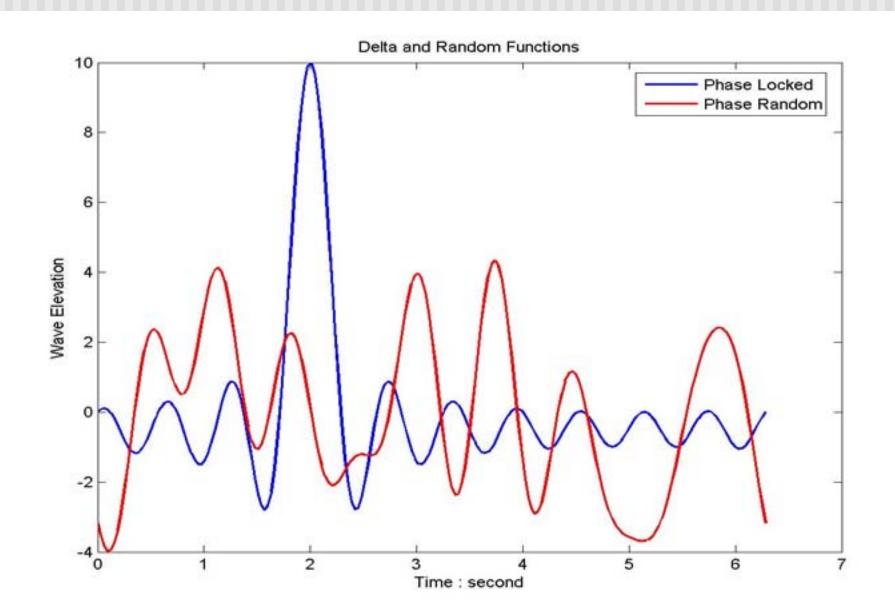


Fourier Series Expansion:

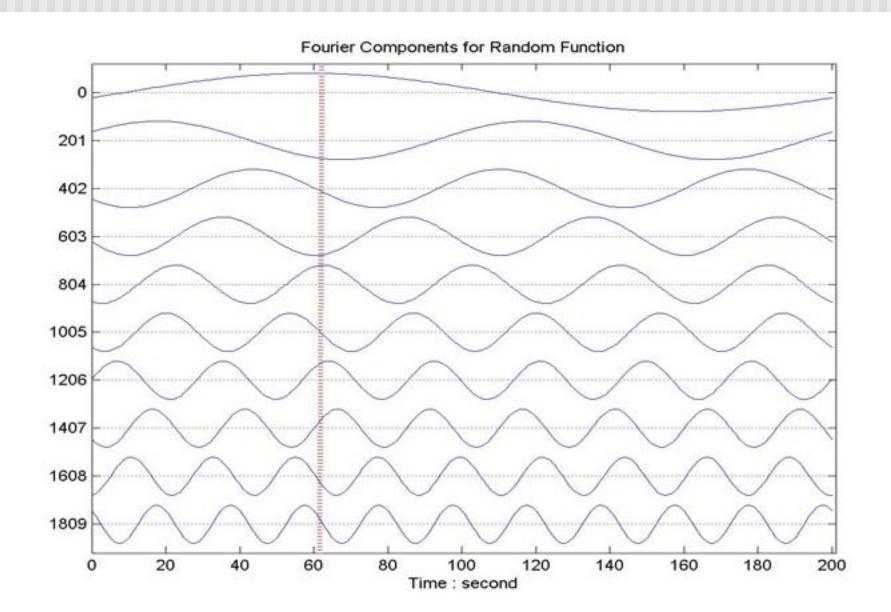
 Any function f(t) can be expanded in terms of discrete sine or cosine functions as

$$f(t) = \frac{1}{2}a_0 + \dot{a}_{n=1}^{\frac{Y}{2}}(a_n\cos w_n t + b_n\sin w_n t).$$

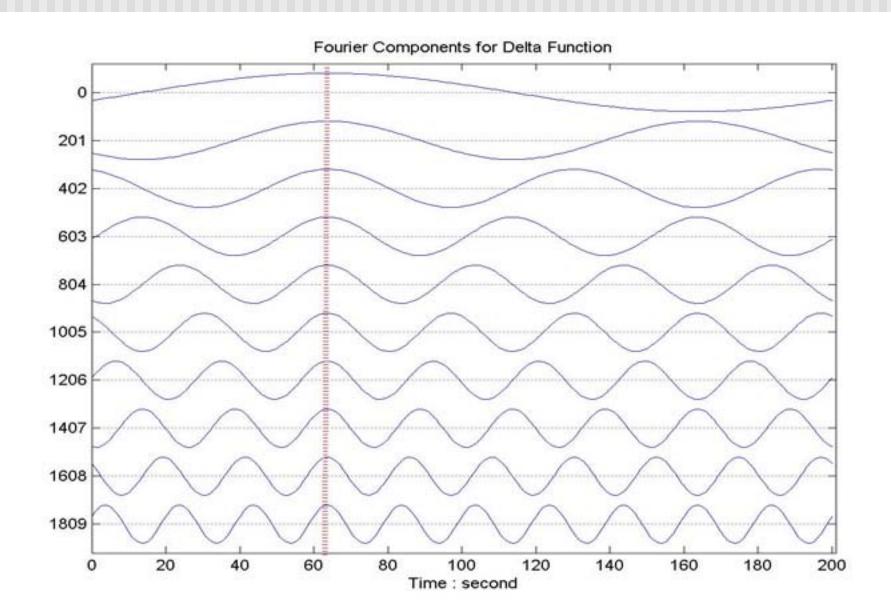
Random and Delta Functions



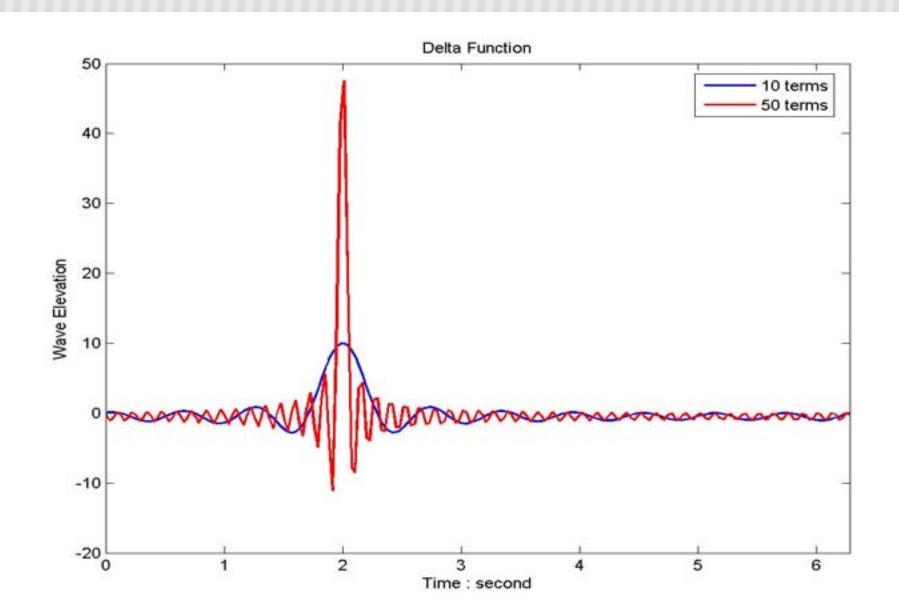
Fourier Components: Random Function



Fourier Components: Delta Function



Fourier Sums: Delta Function



Problems with Fourier Expansion

- Linear and Stationary assumptions.
 - Trigonometric function with constant frequency and amplitude over the whole time span
 - Superposition holds true limited to linear systems.
- Phase information not fully used.
 - No difference between delta and random functions in frequency spectral representation.

Data Analysis is equivalent to Information Extraction

- Data is the only connection between us and the realty.
- All our information is contained in the data.
- Data analysis is the means to extract information form the data.
- Unless we have clear understanding of the underlying processes, data analysis should not be based on a priori basis methods.
- Adaptive basis is the best approach to extract the maximum amount information.
- Hilbert-Huang Transform (HHT) is based on an adaptive approach.
- Data analysis is mechanical; result interpretation is the key to yield information.

5/26/2006 12

The Main Data Analysis Tasks

- Distribution: global properties limited to homogeneous population only;
 HHT can help extract component with homogeneous scale.
- Filtering: mostly Fourier based in frequency space; HHT is a nonlinear time scale based filter.
- Regression: fit data to an a priori functional; HHT fits adaptively with spline.
- Correlation: need to detrend; HHT offers adaptive detrend.
- Spectral Analysis: time-frequency representation; HHT for data from nonlinear and nonstationary processes.
- Prediction: stationary processes; HHT could help here too by provide band-limited components fro easier prediction.

5/26/2006 13

Motivations for a New Method

- Physical processes are mostly nonstationary
- Physical Processes are mostly nonlinear
- Data from observations are invariably too short
- Physical processes are mostly non-repeatable.
- Ensemble mean impossible, and temporal mean might not be meaningful for lack of ergodicity.
 Traditional methods inadequate.

Available Data Analysis Methods for Nonstationary (but Linear) time series

- Various probability distributions
- Spectral analysis and Spectrogram
- Wavelet Analysis
- Wigner-Ville Distributions
- Empirical Orthogonal Functions aka Singular Spectral Analysis
- Moving means
- Successive differentiations

5/26/2006 15

Available Data Analysis Methods for Nonlinear (but Stationary and Deterministic) time series

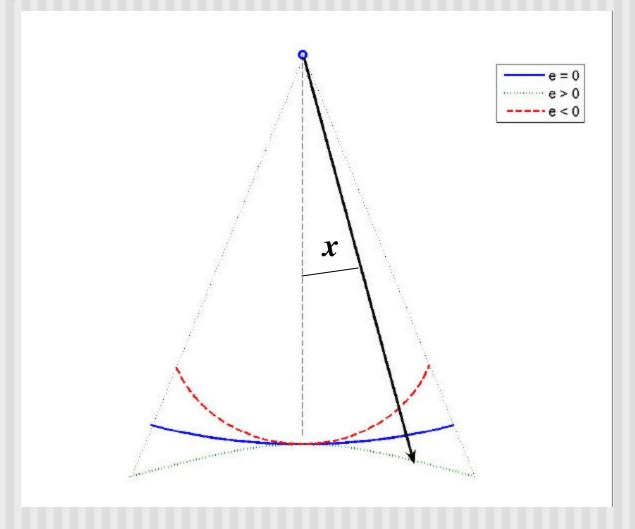
- Phase space method
 - Delay reconstruction and embedding
 - Poincaré surface of section
 - Self-similarity, attractor geometry & fractals
- Nonlinear Prediction
- Lyapunov Exponents for stability

The Need for Instantaneous Frequency in Nonstationary and Nonlinear Processes

$$\frac{d^2 x}{dt^2} + x + e x^3 = g \cos wt$$

D Spring with positiondependent constant, intra - wave frequency modulation; therefore, we need instantaneous frequency.

Duffing Pendulum



$$\frac{d^2x}{dt^2} + x(1 + ex^2) = g \cos wt.$$

5/26/2006 18

Hilbert Transform: Definition

For any $x(t)\hat{I} L^p$,

$$y(t) = \frac{1}{p} \tilde{A} \sum_{t=t}^{\infty} \frac{x(t)}{t-t} dt,$$

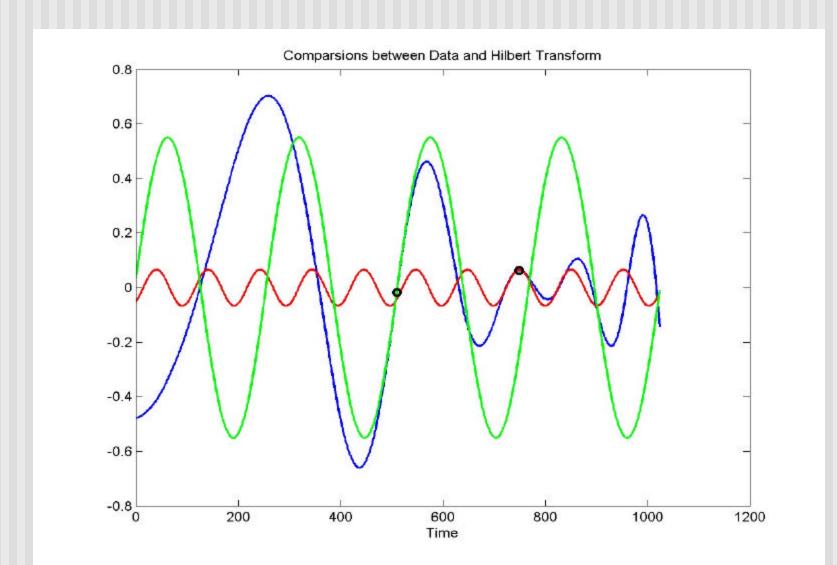
then, x(t) and y(t) are complex conjugate:

$$z(t) = x(t) + i y(t) = a(t) e^{iq(t)},$$

where

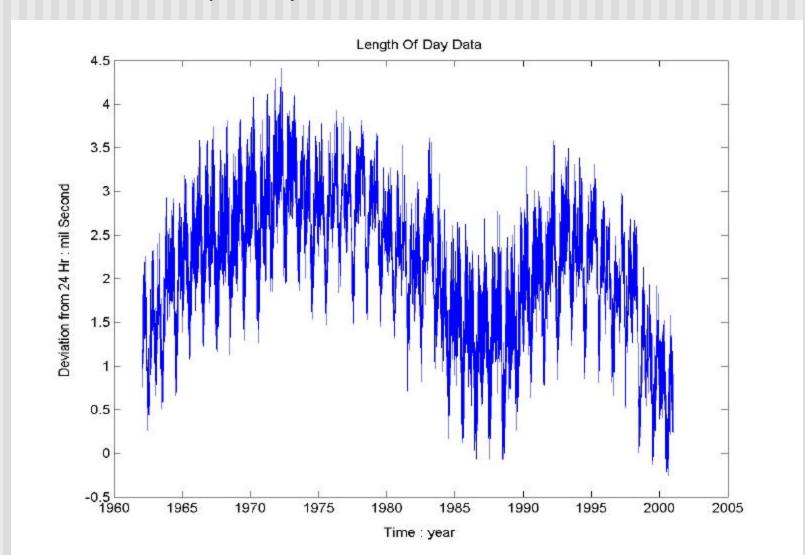
$$a(t) = (x^{2} + y^{2})^{1/2} \text{ and } q(t) = tan^{-1} \frac{y(t)}{x(t)}.$$

Hilbert Transform Fit

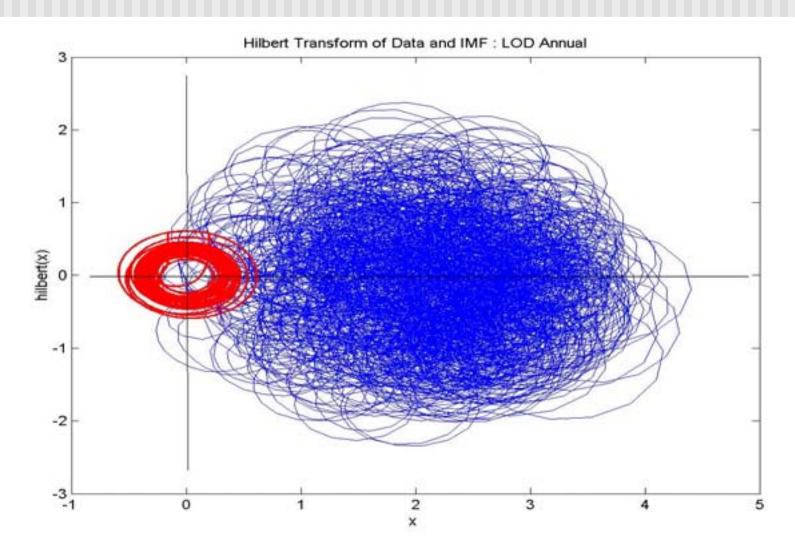


The Traditional View of the Hilbert Transform for Data Analysis

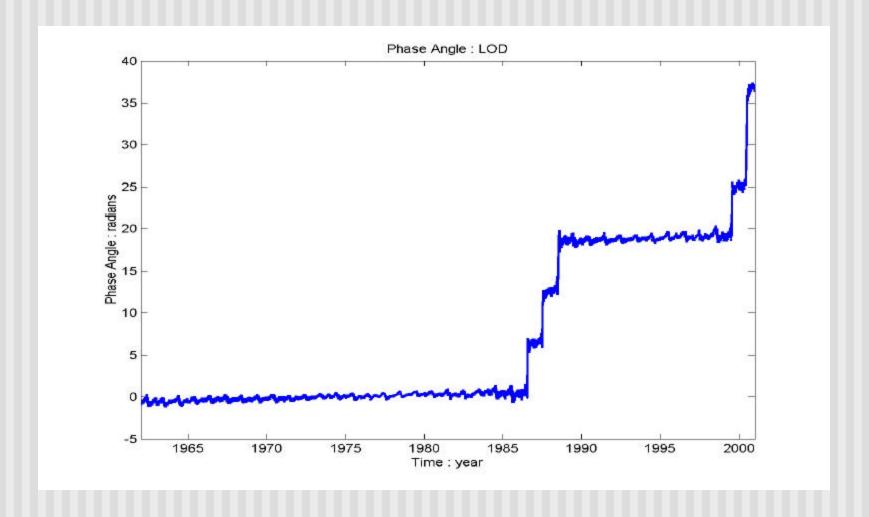
a la Hahn (1995) : Data LOD



a la Hahn (1995): Hilbert

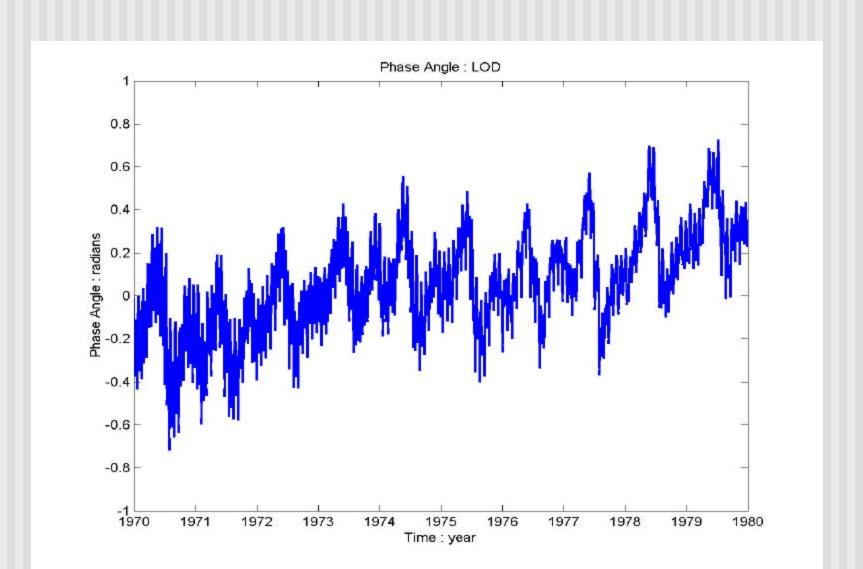


a la Hahn (1995): Phase Angle

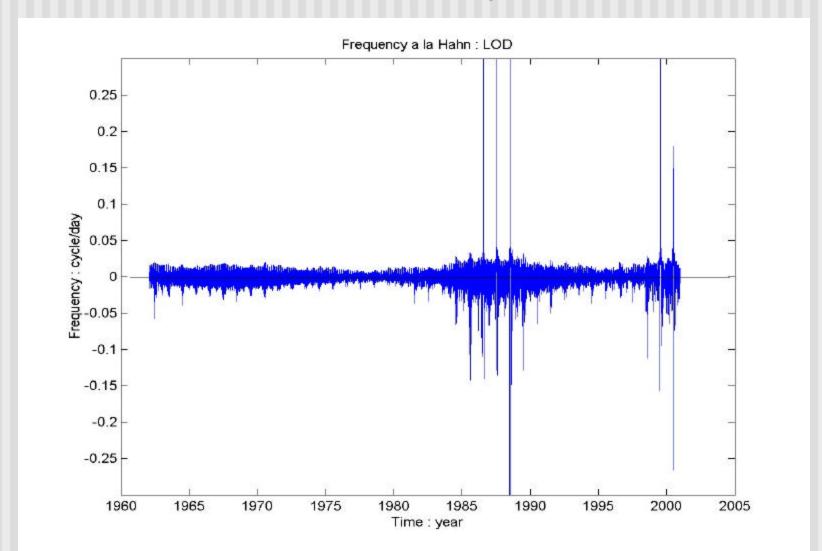


5/26/2006 24

a la Hahn (1995): Phase Angle Details

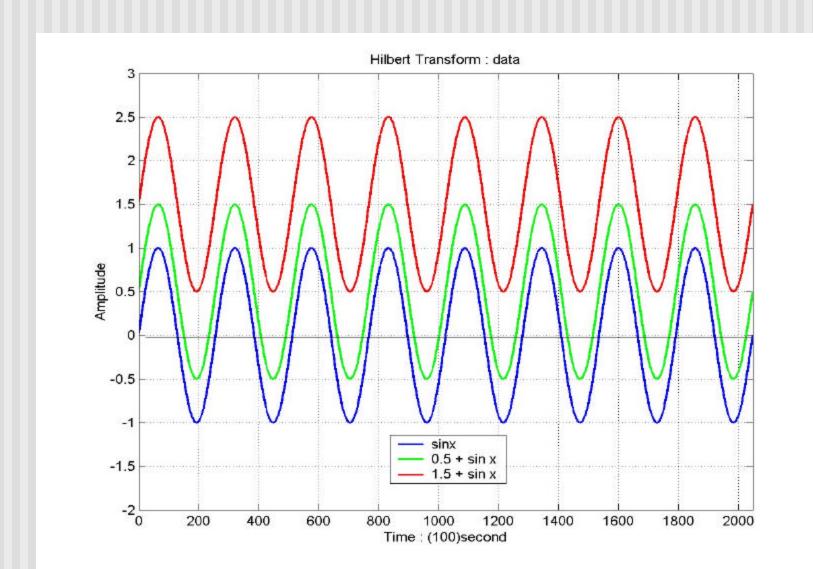


a la Hahn (1995) : Frequency

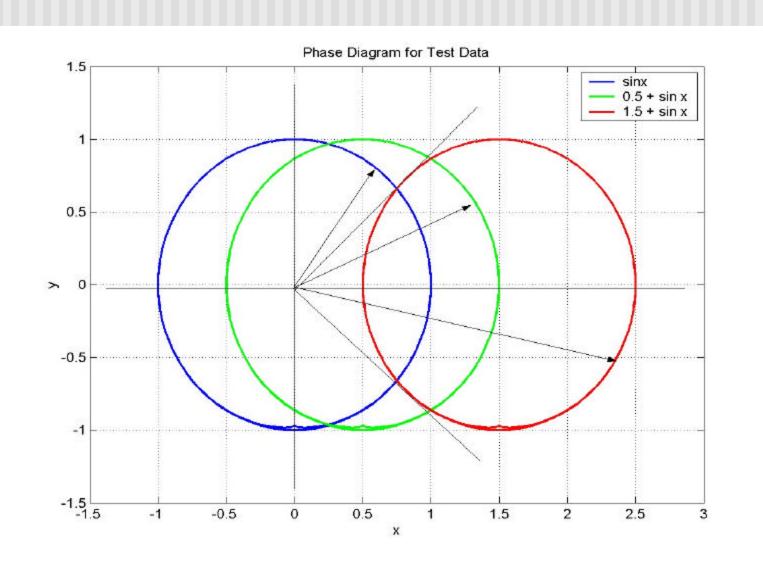


Why the traditional view does not work?

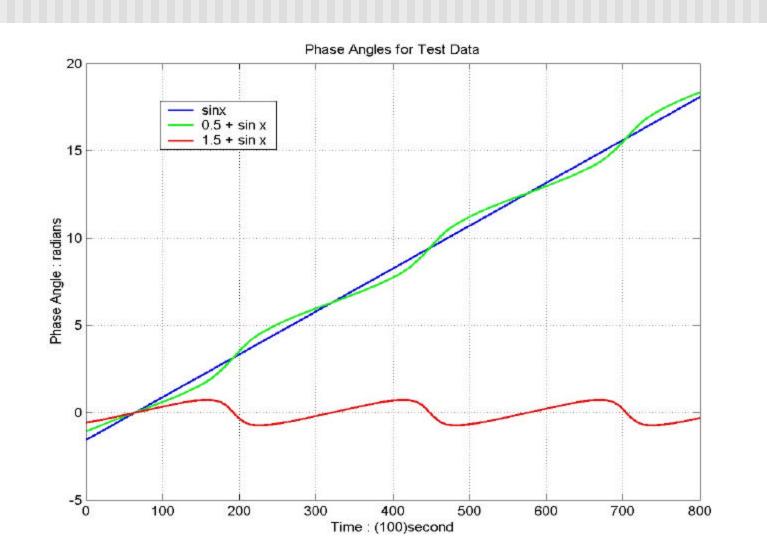
Hilbert Transform a cos 🗖 + b: Data



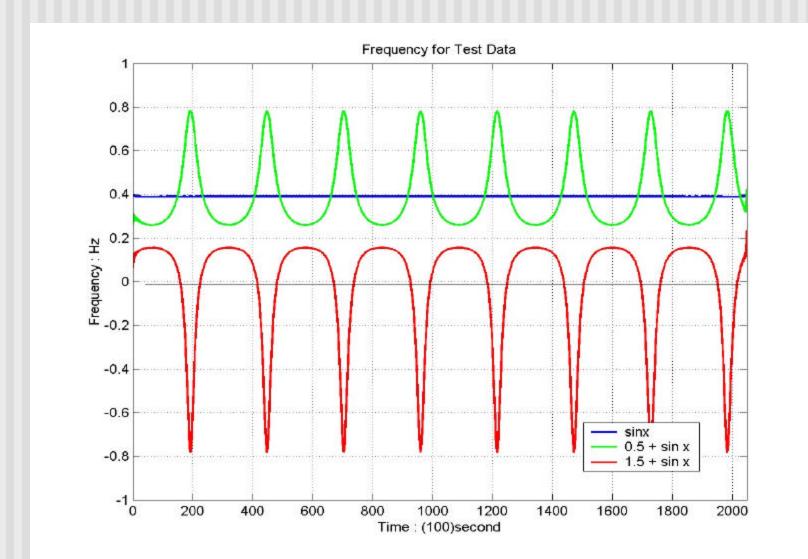
Hilbert Transform *a cos* □ + *b :*Phase Diagram



Hilbert Transform $a cos \square + b$: Phase Angle Details



Hilbert Transform *a cos* □ + *b :* Frequency

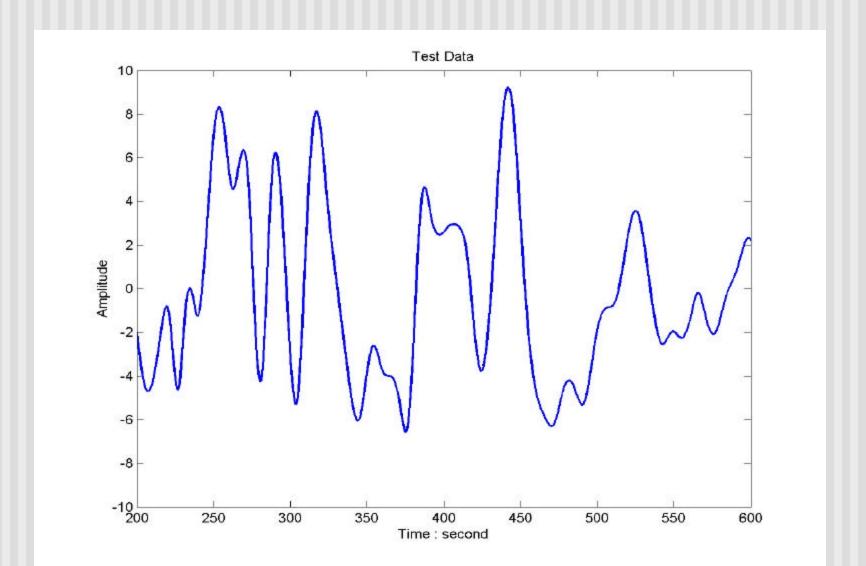


The Empirical Mode Decomposition Method and Hilbert Spectral Analysis

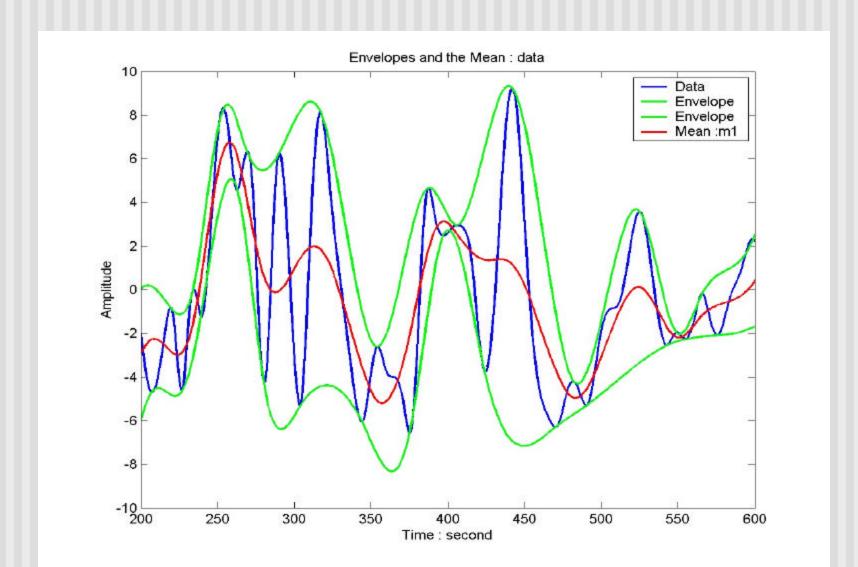
Sifting

Empirical Mode Decomposition:

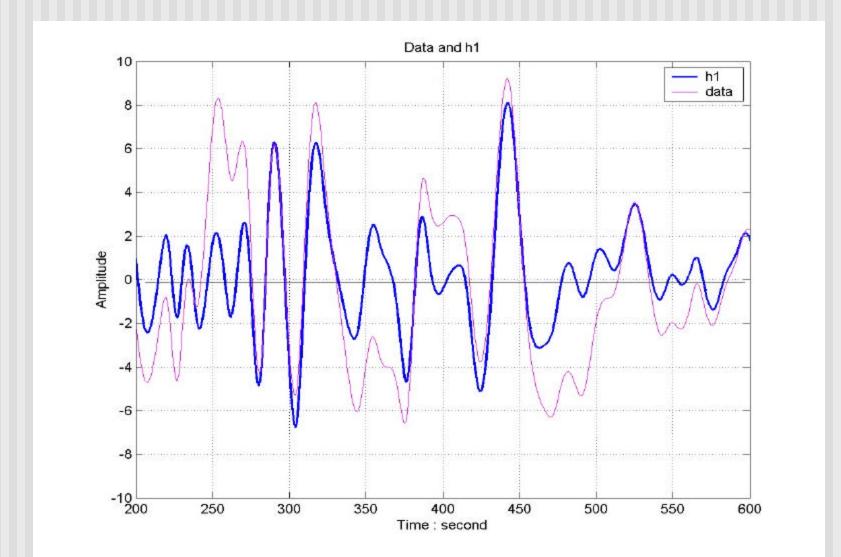
Methodology: Test Data



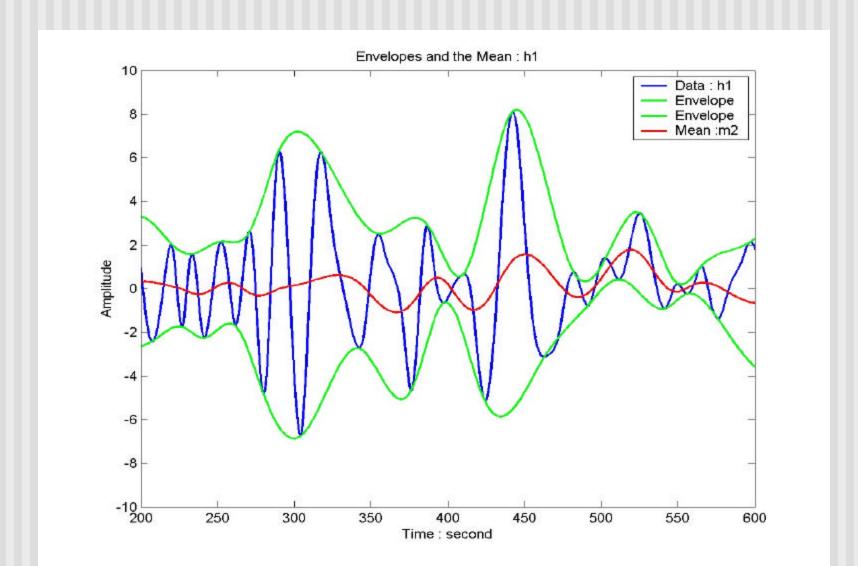
Empirical Mode Decomposition: Methodology: data and m1



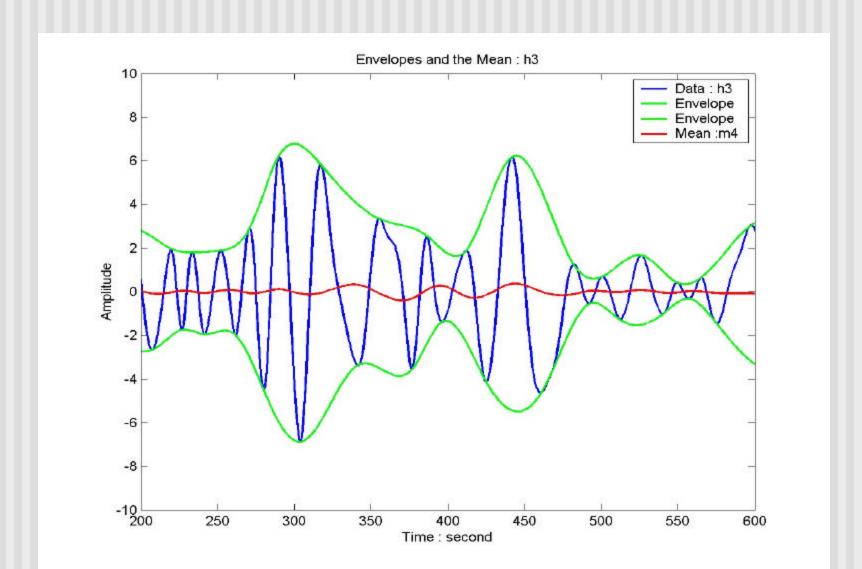
Empirical Mode Decomposition: Methodology: data & h1



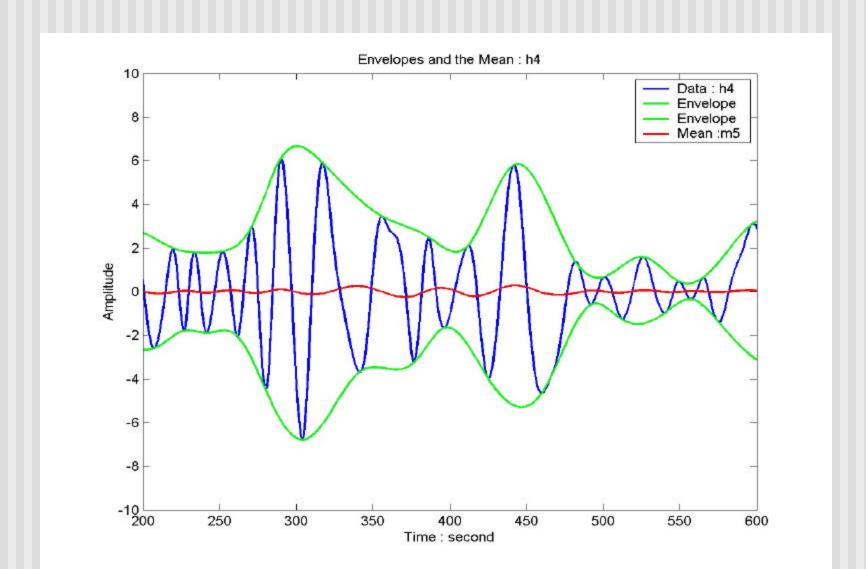
Empirical Mode Decomposition: Methodology: h1 & m2



Empirical Mode Decomposition: Methodology: h3 & m4



Empirical Mode Decomposition: Methodology: h4 & m5



Empirical Mode Decomposition

Sifting: to get one IMF component

$$x (t) - m_1 = h_1,$$
 $h_1 - m_2 = h_2,$
.....
 $h_{k-1} - m_k = h_k.$

5/26/2006 39

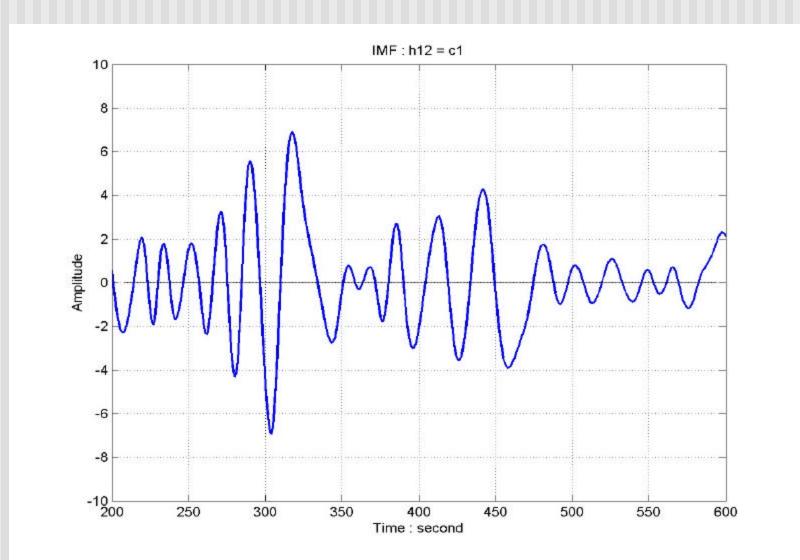
Two Stoppage Criteria: S and SD

- A. The S number: S is defined as the consecutive number of siftings, in which the numbers of zerocrossing and extrema are the same for these S siftings.
- B. SD is small than a pre-set value, where

$$SD = \dot{a}_{t=0}^{T} \frac{|h_{k-1}(t) - h_{k}(t)|^{2}}{h_{k-1}^{2}(t)}.$$

5/26/2006 40

Empirical Mode Decomposition: Methodology: IMF c1



Definition of the Intrinsic Mode Function (IMF)

Any function having the same numbers of zero - cros sin gs and extrema, and also having symmetric envelopes defined by local maxima and min ima respectively is defined as an Intrinsic Mode Function (IMF).

All IMF enjoys good HilbertTransform:

$$P P c(t) = a(t)e^{iq(t)}$$

5/26/2006 42

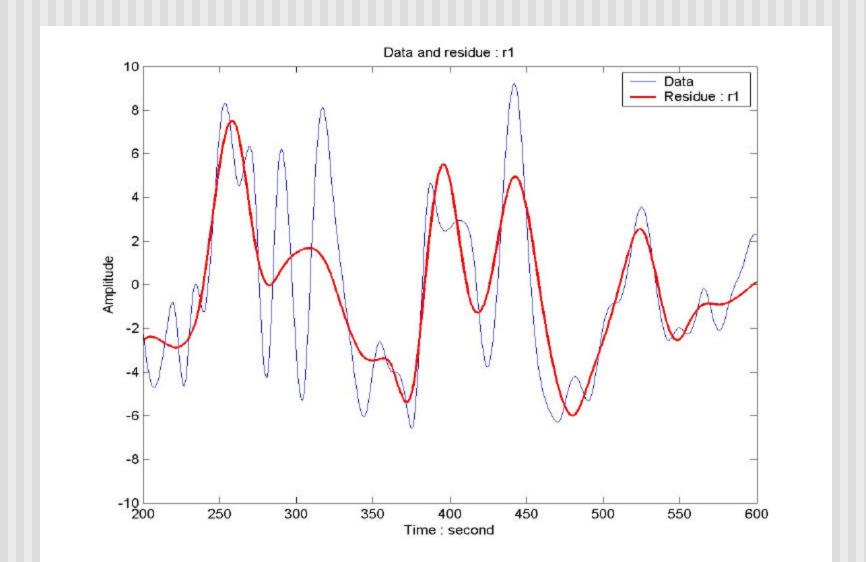
Empirical Mode Decomposition

Sifting: to get all the IMF components

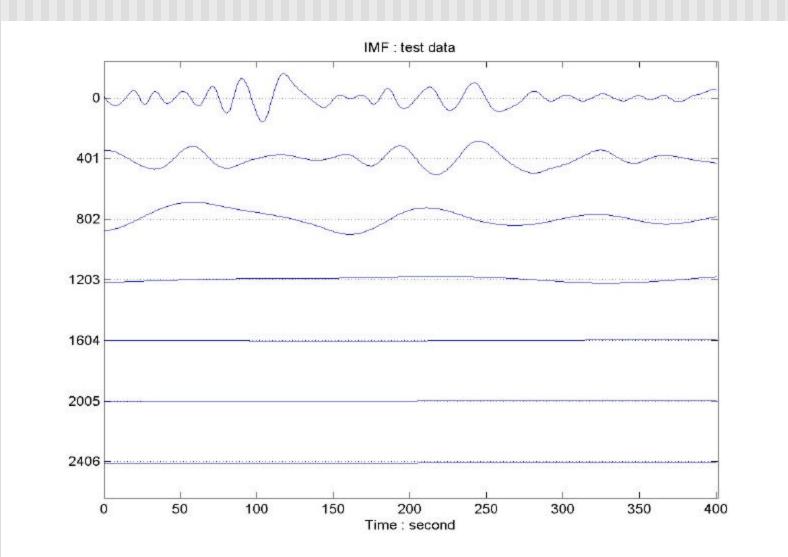
$$x(t) - c_1 = r_1$$
,
 $r_1 - c_2 = r_2$,
 $r_{n-1} - c_n = r_n$.

5/26/2006 43

Empirical Mode Decomposition: Methodology: data & r1



Empirical Mode Decomposition: Methodology: IMFs



Definition of Instantaneous Frequency

The Fourier Transform of the Instrinsic Mode Funnction, c(t), gives

$$W(W) = \underset{t}{\partial} a(t) e^{i(q-wt)} dt$$

By Stationary phaseapproximation we have

$$\frac{dq(t)}{dt} = W,$$

This is defined as the Instantaneous Frequency.

Comparison between FFT and HHT

1. FFT:

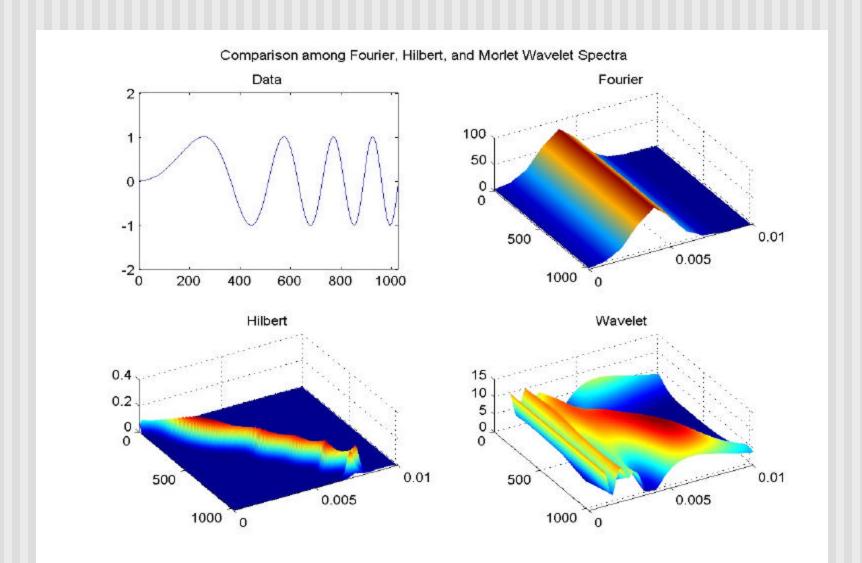
$$x(t) = \hat{A} \dot{a}_j a_j e^{iw_j t}$$
.

2. HHT:

$$x(t) = \hat{A} \dot{a}_{j} a_{j}(t) e^{i \dot{0} w_{j}(t) dt}$$

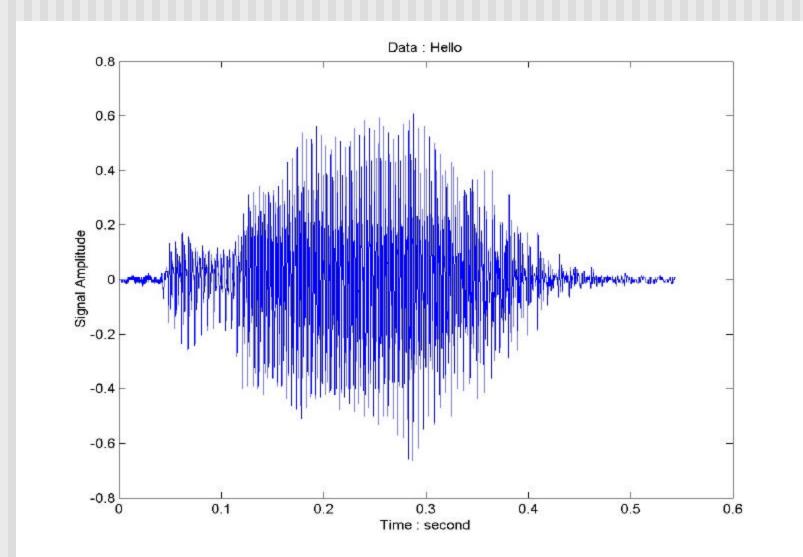
5/26/2006

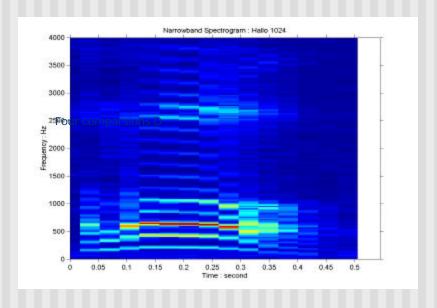
Comparisons: Fourier, Hilbert & Wavelet

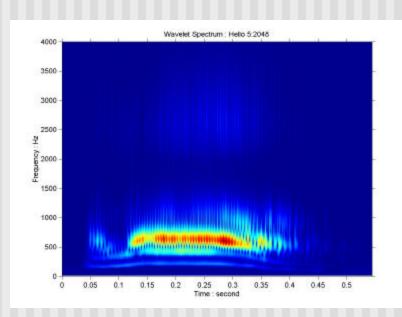


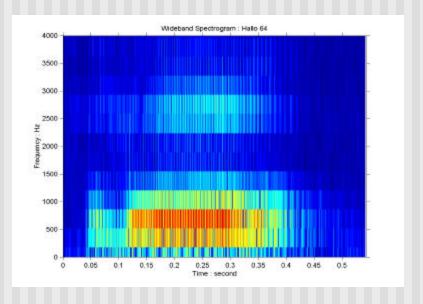
Speech Analysis

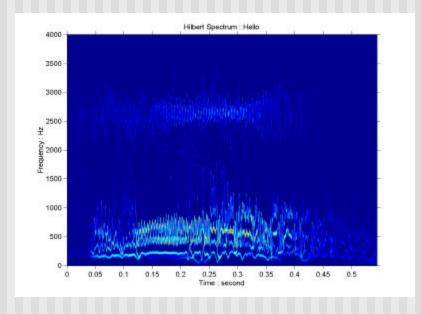
Hello: Data









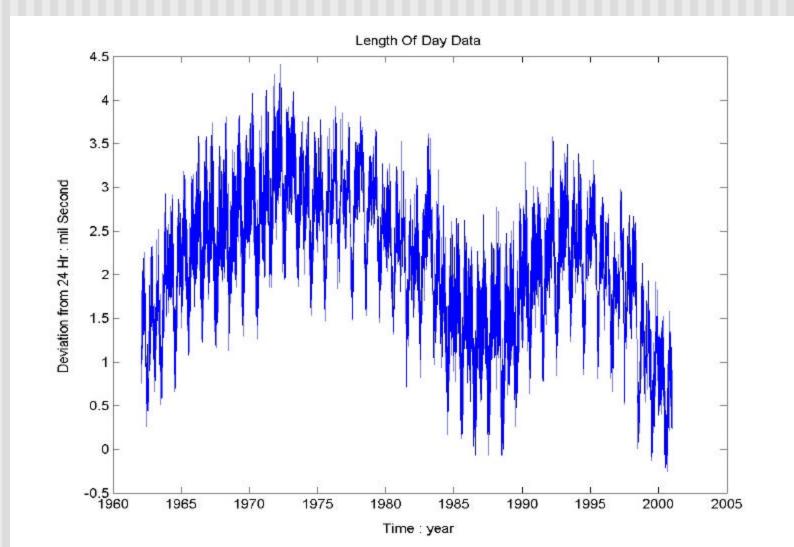


5/26/2006 50

An Example of Sifting

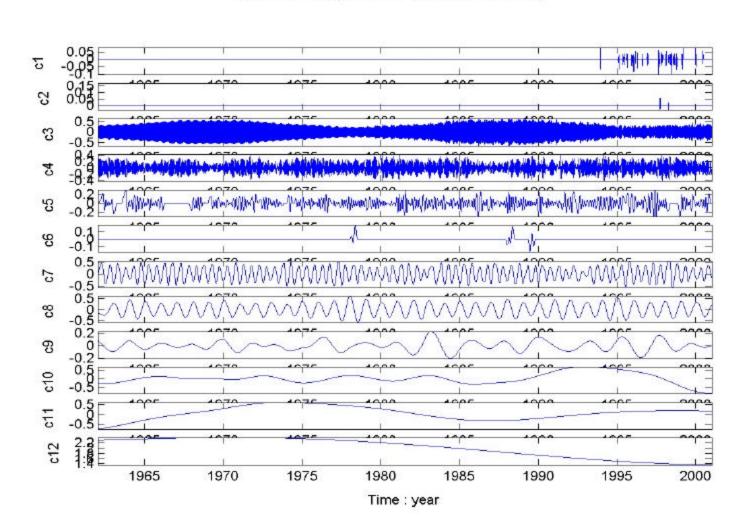
5/26/2006

Length Of Day Data



LOD: IMF

IMF LOD62 : ci(100,8,8; 3a,: 50,3,3;-12,45a, -10)



Orthogonality Check

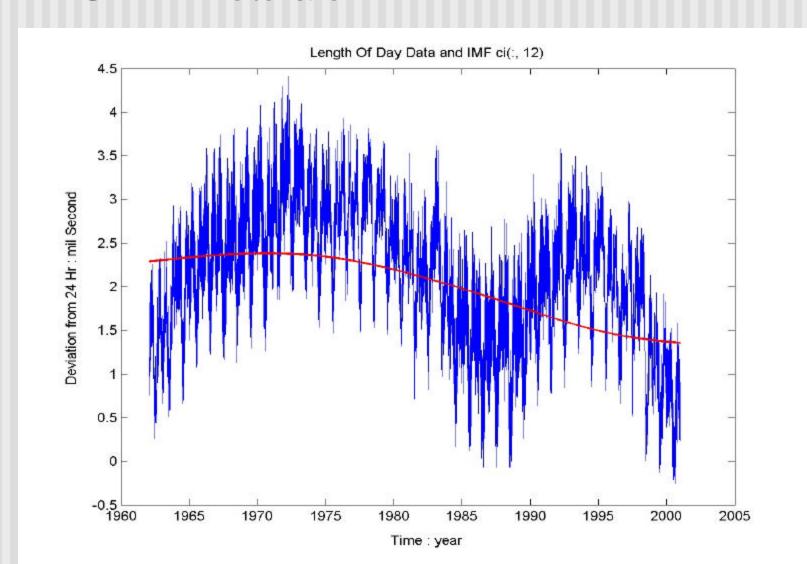
- Pair-wise %
- 0.0003
- 0.0001
- 0.0215
- 0.0117
- 0.0022
- 0.0031
- 0.0026
- 0.0083
- 0.0042
- 0.0369
- 0.0400

Overall %

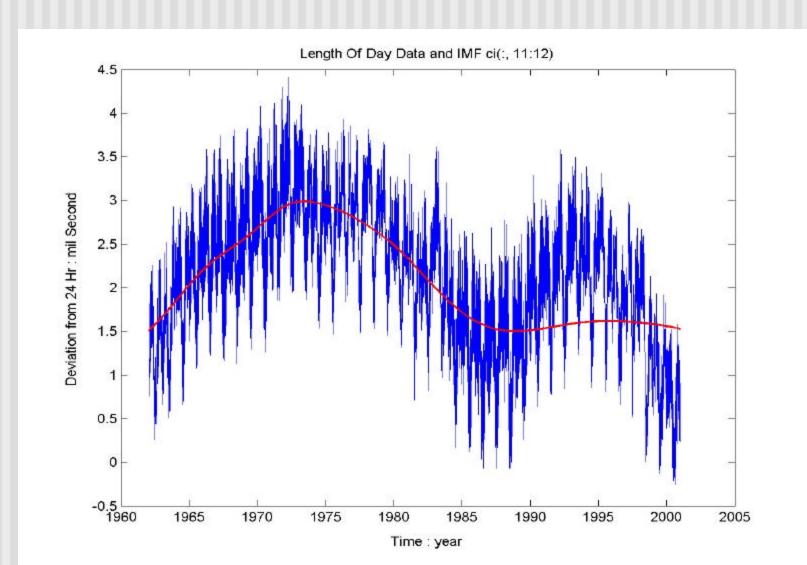
0.0452

5/26/2006 54

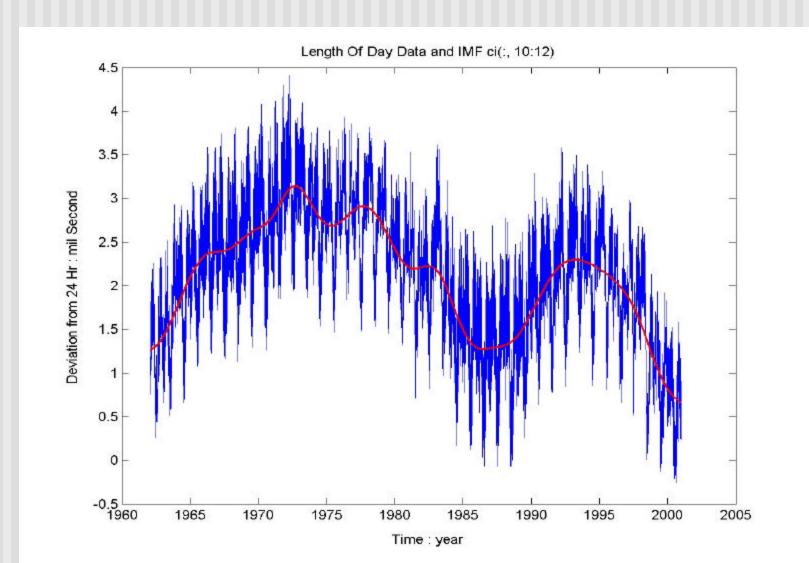
LOD: Data & c12



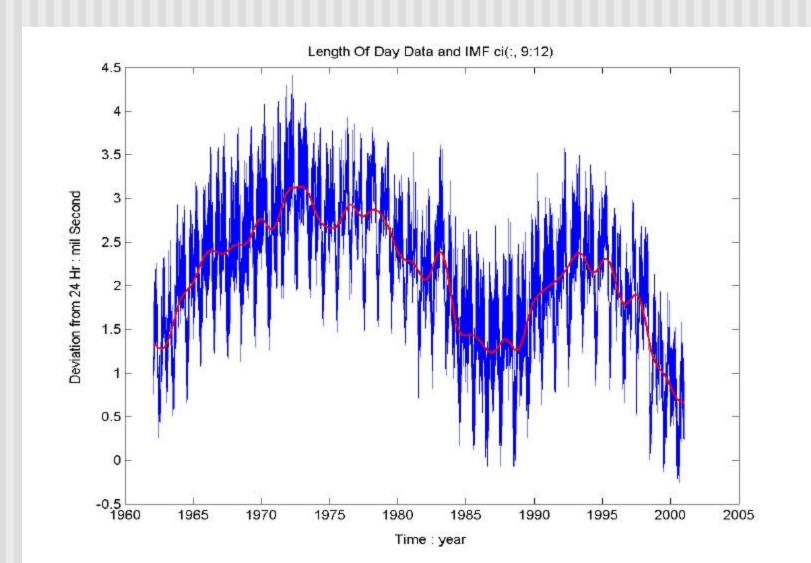
LOD: Data & Sum c11-12



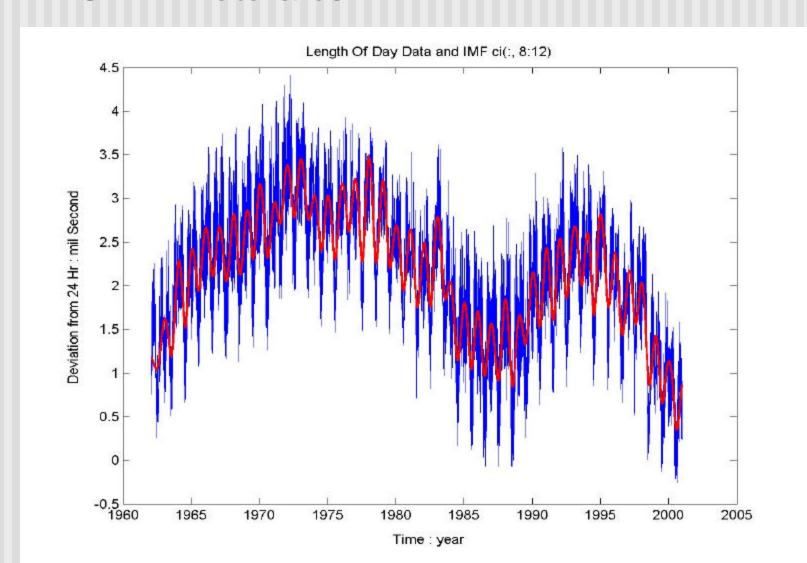
LOD: Data & sum c10-12



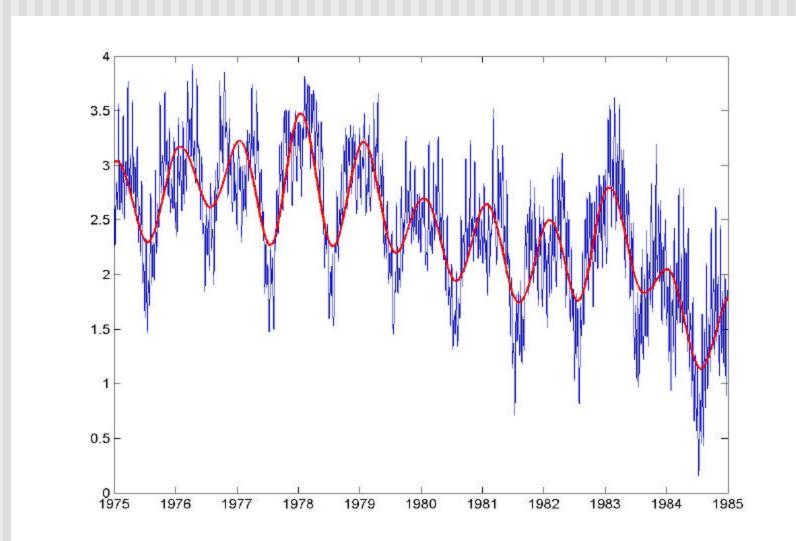
LOD: Data & c9 - 12



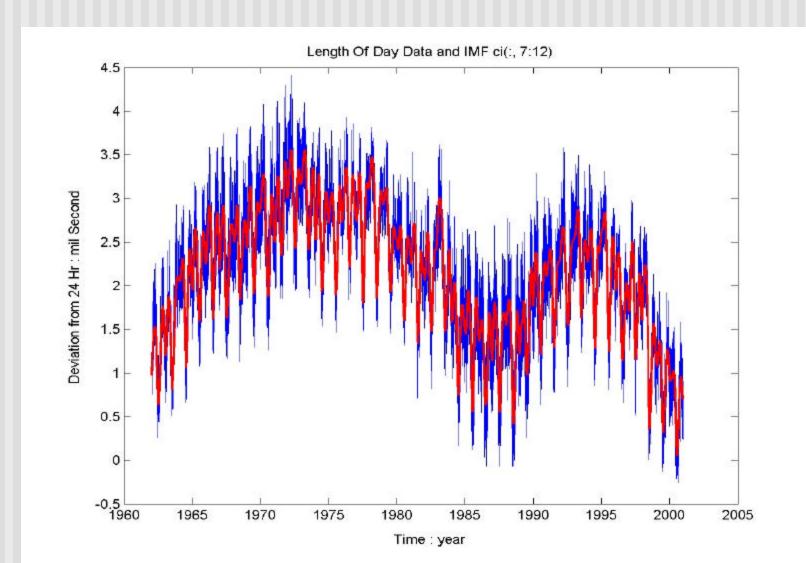
LOD: Data & c8 - 12



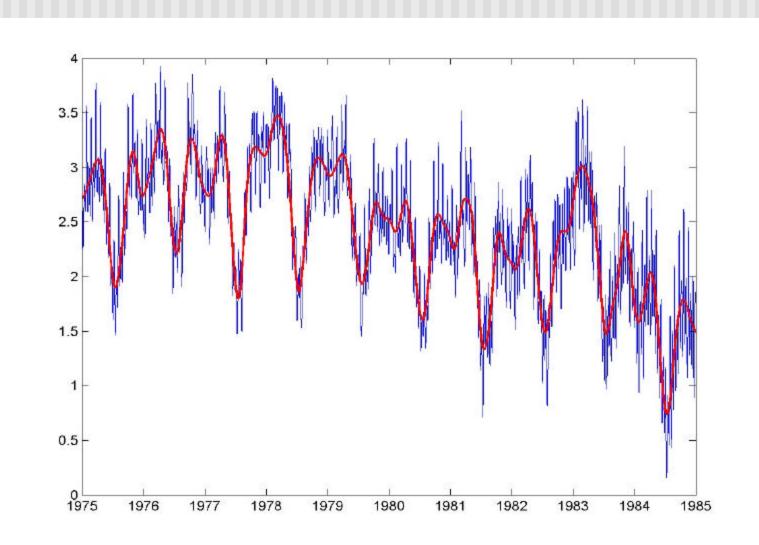
LOD: Detailed Data and Sum c8-c12



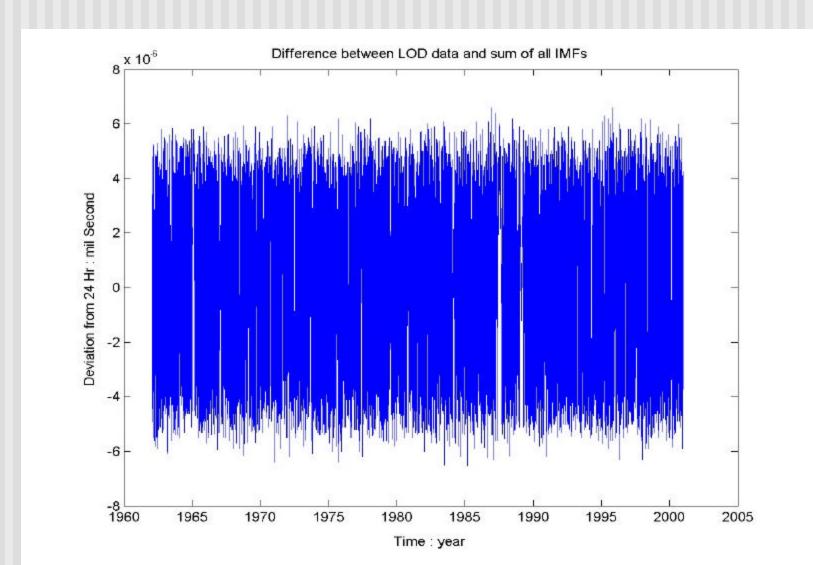
LOD: Data & c7 - 12



LOD: Detail Data and Sum IMF c7-c12

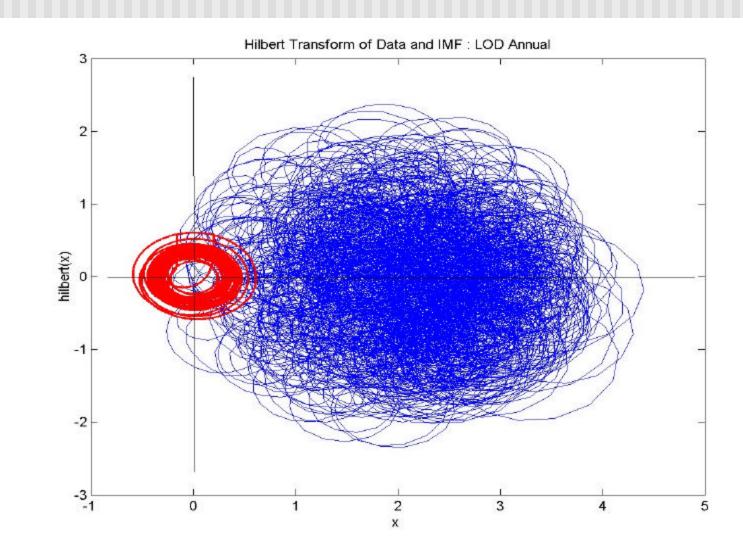


LOD: Difference Data – sum all IMFs

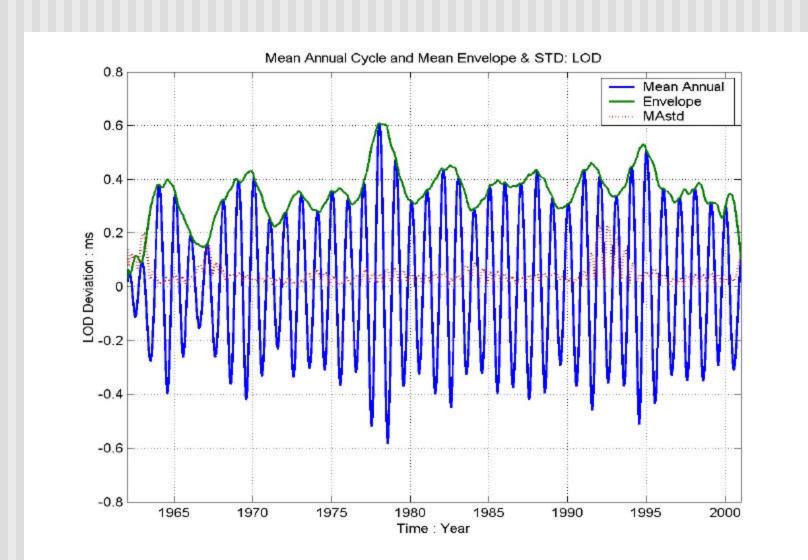


Traditional View

a la Hahn (1995): Hilbert



Mean Annual Cycle & Envelope: 9 CEI Cases

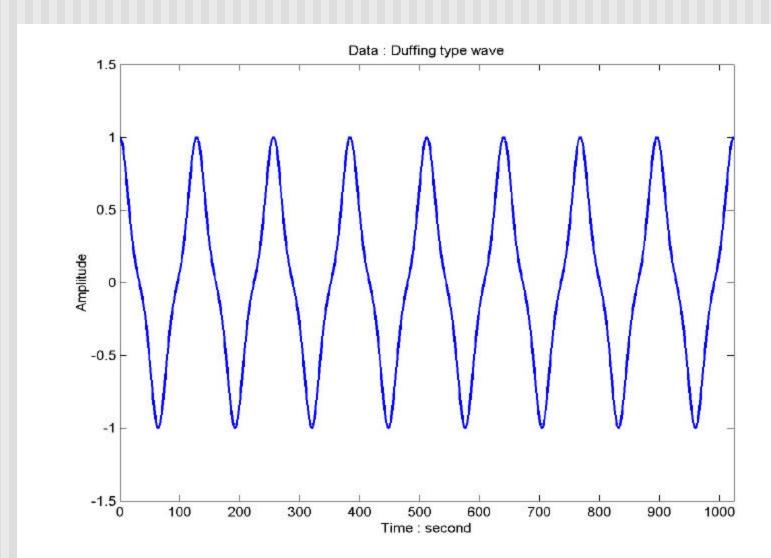


Hilbert's View on Nonlinear Data

5/26/2006

Duffing Type Wave

Data: x = cos(wt+0.3 sin2wt)



Duffing Type Wave

Perturbation Expansion

For $e \square 1$, we can have

$$x(t) = \cos(wt + e\sin 2wt)$$

$$= \cos wt \cos(e\sin 2wt) - \sin wt \sin(e\sin 2wt)$$

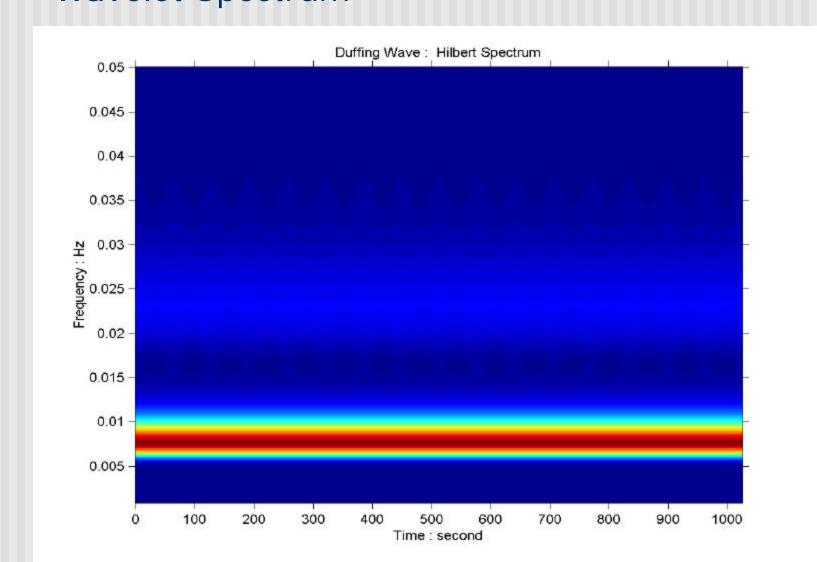
$$= \cos wt - e\sin wt \sin 2wt + ...$$

$$= \frac{e}{c} 1 - \frac{e}{c} \frac{\ddot{o}}{\dot{a}} \cos wt + \frac{e}{c} \cos 3wt + ...$$

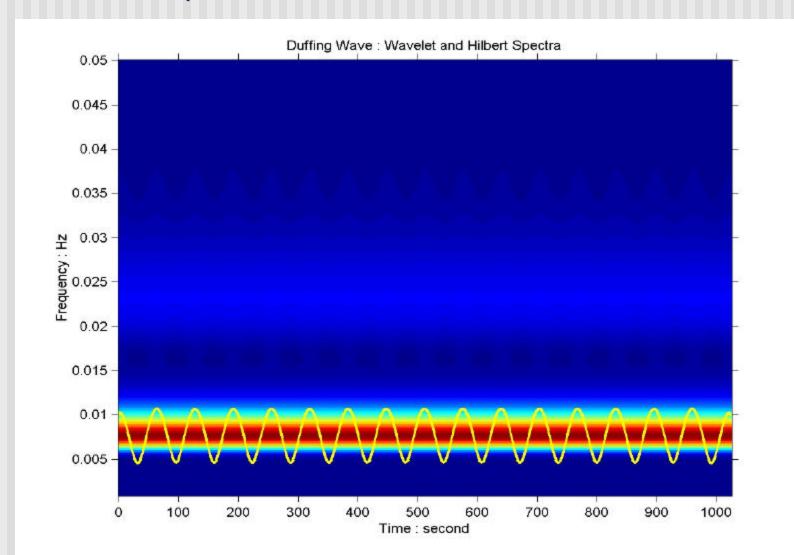
This is very similar to the solution of Duffing equation.

5/26/2006

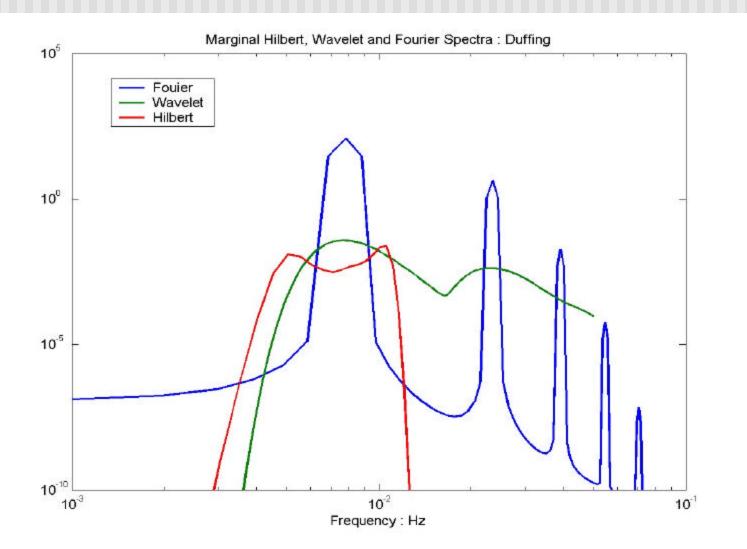
Duffing Type Wave Wavelet Spectrum



Duffing Type Wave Hilbert Spectrum



Duffing Type Wave Marginal Spectra



Duffing Equation

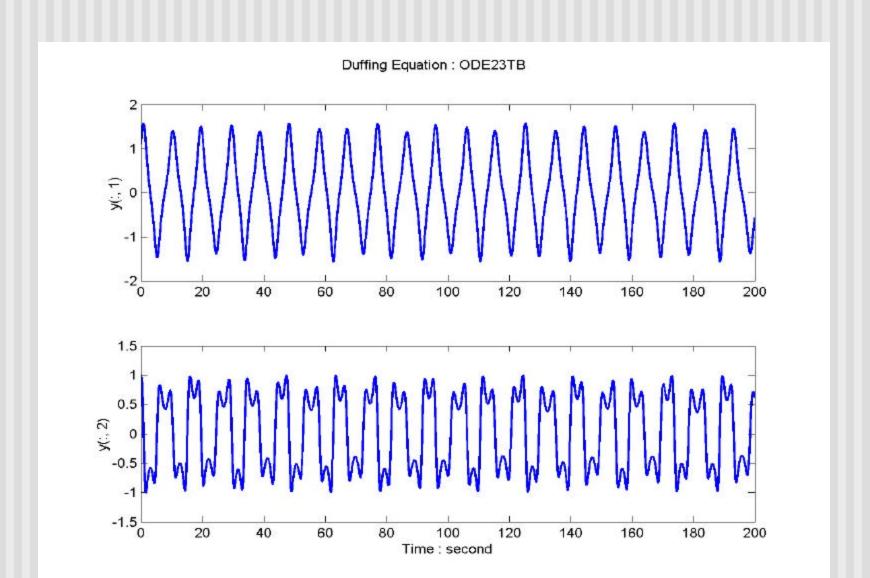
$$\frac{d^2 x}{dt^2} + x + e x^3 = g \cos wt.$$
Solved with ode 23tb for $t = 0$ to 200 with $e = -1$

$$g = 0.1$$

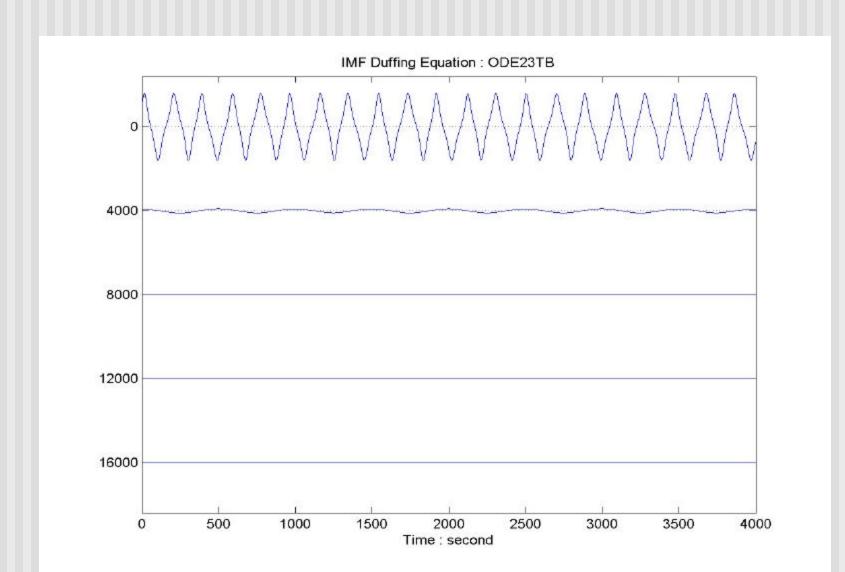
$$w = 0.04 Hz$$
Initial condition:
$$[x(o), x'(0)] = [1, 1]$$

5/26/2006

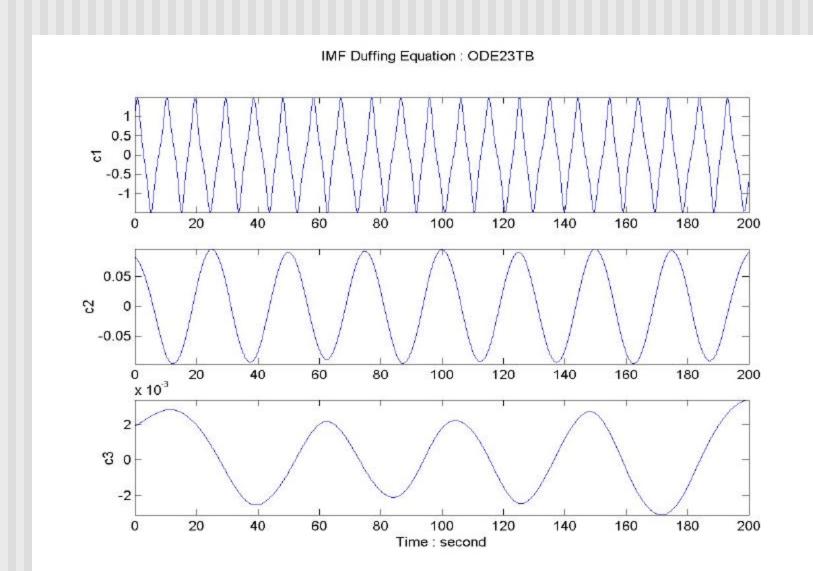
Duffing Equation: Data



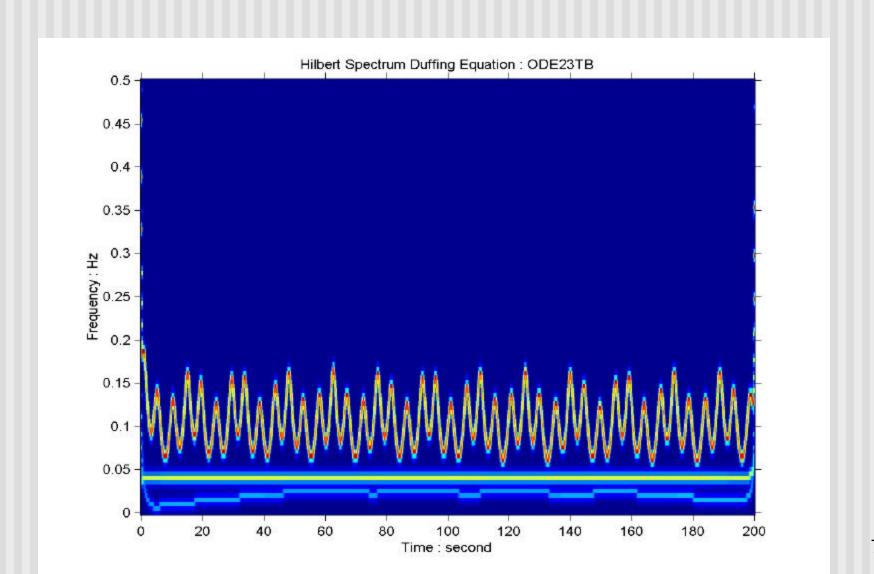
Duffing Equation: IMFs



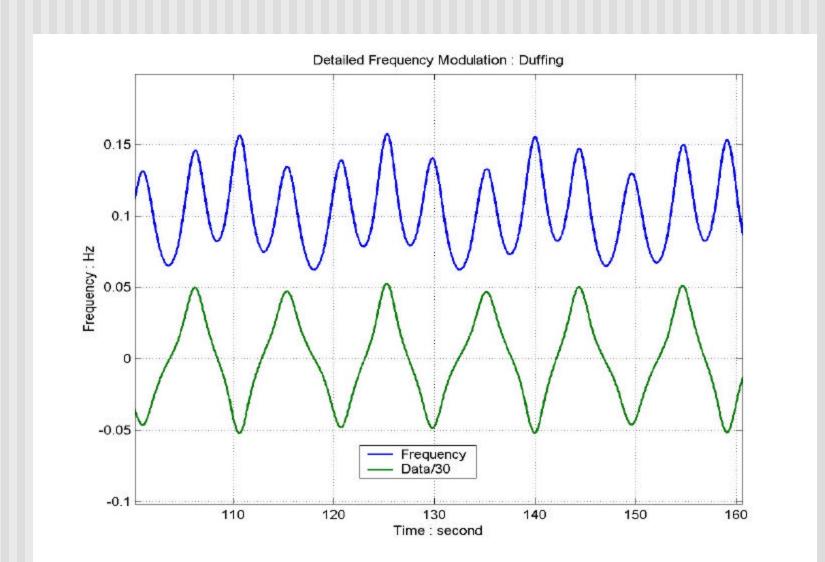
Duffing Equation: IMFs



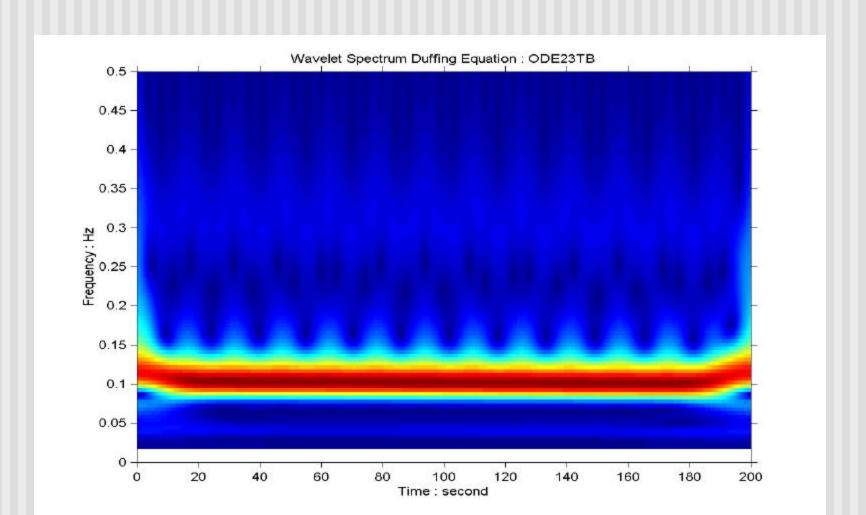
Duffing Equation: Hilbert Spectrum



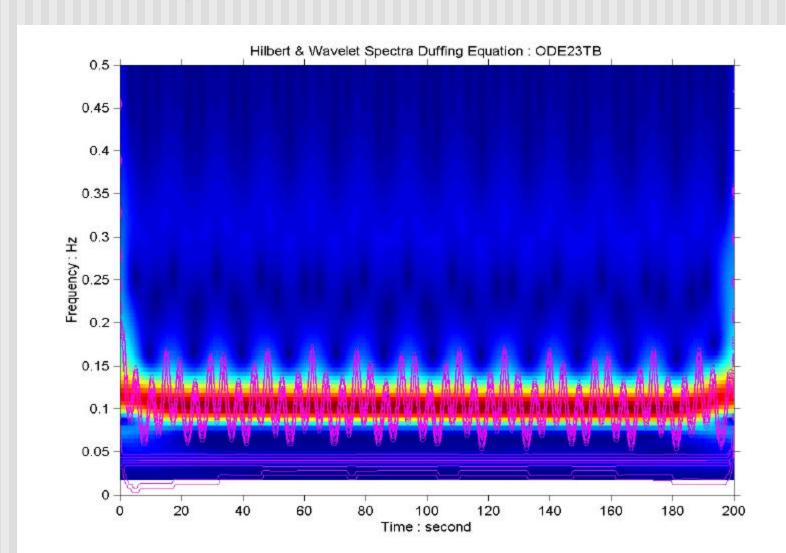
Duffing Equation: Detailed Hilbert Spectrum



Duffing Equation: Wavelet Spectrum



Duffing Equation: Hilbert & Wavelet Spectra



What This Means

- Instantaneous Frequency offers a total different view for nonlinear data: instantaneous frequency with no need for harmonics and unlimited by uncertainty.
- Adaptive basis is indispensable for nonstationary and nonlinear data analysis
- HHT establishes a new paradigm of data analysis

5/26/2006 80

Comparisons

	Fourier	Wavelet	Hilbert
Basis	a priori	a priori	Adaptive
Frequency	Convolution: Global	Convolution: Regional	Differentiation: Local
Presentation	Energy- frequency	Energy-time- frequency	Energy-time- frequency
Nonlinear	no	no	yes
Non-stationary	no	yes	yes
Uncertainty	yes	yes	no
Harmonics	yes	yes	no

5/26/2006 81

Current Applications

- Non-destructive Evaluation for Structural Health Monitoring
 - (DOT, NSWC, and DFRC/NASA, KSC/NASA Shuttle)
- Vibration, speech, and acoustic signal analyses
 - (FBI, MIT, and DARPA)
- Earthquake Engineering
 - (DOT)
- Bio-medical applications
 - (Harvard, UCSD, Johns Hopkins, and Southampton, UK)
- Global Primary Productivity Evolution map from LandSat data
 - (NASA Goddard, NOAA)
- Cosmological Gravity Wave and Planets hunting
 - (NASA Goddard, and Nicholas Copernicus University, Poland)
- Financial market data analysis
 - (NASA and HKUST)5/26/2006